Review of Accelerator Physics Concepts Jeff Eldred Beam Loss Machine Protection Course 01/23/2017 USPAS

Overview

- 1. Betatron Motion
- 2. Nonlinearities
- 3. Off-Momentum Particles
- 4. RF Capture

Betatron Motion

(3)

Linear Focusing

We can solve the linear Hill's equation: x'' + K(s)x = 0

Transfer Matrices

$$x(s) = \begin{cases} x_0 \cosh(\sqrt{|K|}s) + \frac{x'_0}{\sqrt{|K|}} \sinh(\sqrt{|K|}s), & K < 0\\ x_0 + x'_0 s, & K = 0\\ x_0 \cos(\sqrt{K}s) + \frac{x'_0}{\sqrt{K}} \sin(\sqrt{K}s), & K > 0 \end{cases}$$

The final position and slope is a linear combination of the initial position and initial slope. We can use matrices:

$$\left(\begin{array}{c} x(s_1) \\ x'(s_1) \end{array}\right) = M \left(\begin{array}{c} x(s_0) \\ x'(s_0) \end{array}\right)$$

The transfer matrix for a sequence of elements can be obtained by multiplying the matrices for the components.

TWISS (Courant-Snyder) Parameters

The transfer matrix for a stable ring can be parametrized:

 $M(s) = \begin{pmatrix} \cos \Phi + \alpha \sin \Phi & \beta \sin \Phi \\ -\gamma \sin \Phi & \cos \Phi - \alpha \sin \Phi \end{pmatrix} \qquad \begin{aligned} \alpha_x &= -\frac{\beta'_x}{2} \\ \gamma_x &= \frac{1 + \alpha_x^2}{\beta_x} \end{aligned}$

The transfer matrix for a general transfer matrix:

$$M(s_2|s_1) = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}}(\cos\Delta\Phi + \alpha_1\sin\Delta\Phi) & \sqrt{\beta_1\beta_2}\sin\Delta\Phi \\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\Delta\Phi + \frac{\alpha_1-\alpha_2}{\sqrt{\beta_1\beta_2}}\cos\Delta\Phi & \sqrt{\frac{\beta_1}{\beta_2}}(\cos\Delta\Phi - \alpha_2\sin\Delta\Phi) \end{pmatrix}$$

For example, we can calculate TWISS for a FODO ring:

$$M(s_0) = \begin{pmatrix} 1 - \frac{L^2}{2f} & 2L\left(1 + \frac{L}{2f}\right) \\ -\frac{L}{2f^2}\left(1 - \frac{L}{2f}\right) & 1 - \frac{L^2}{2f} \end{pmatrix} \qquad \cos \Phi = \frac{1}{2}\operatorname{Tr}(M) = 1 - L^2/2f$$
$$\beta = \frac{(2L)(1 + L/2f)}{\sin \Phi}$$
$$\alpha = 0$$

TWISS Plots

TWISS & Betatron Oscillation

The general transfer matrix can be decomposed:

$$M(s_2|s_1) = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}}(\cos\Delta\Phi + \alpha_1\sin\Delta\Phi) & \sqrt{\beta_1\beta_2}\sin\Delta\Phi \\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\Delta\Phi + \frac{\alpha_1-\alpha_2}{\sqrt{\beta_1\beta_2}}\cos\Delta\Phi & \sqrt{\frac{\beta_1}{\beta_2}}(\cos\Delta\Phi - \alpha_2\sin\Delta\Phi) \end{pmatrix} \\ = \begin{pmatrix} \sqrt{\beta_2} & 0 \\ -\frac{\alpha_2}{\sqrt{\beta_2}} & \frac{1}{\sqrt{\beta_2}} \end{pmatrix} \begin{pmatrix} \cos\Delta\Phi & \sin\Delta\Phi \\ -\sin\Delta\Phi & \cos\Delta\Phi \end{pmatrix} \begin{pmatrix} \sqrt{\beta_1} & 0 \\ -\frac{\alpha_1}{\sqrt{\beta_1}} & \frac{1}{\sqrt{\beta_1}} \end{pmatrix}^{-1}$$

An inverse transformation, a rotation, and transformation.

This allows us to understand what the TWISS parameters mean for the particle motion:

$$x(s) = \sqrt{2\beta_x J_x} \cos(\phi_x) \qquad \qquad x' = -\sqrt{\frac{2J_x}{\beta_x}} [\sin(\phi_x) + \alpha_x \cos(\phi_x)]$$

Betatron Oscillation

Wille

Betatron Phase-space

Betatron Motion

Betatron Phase Advance

$$x(s) = \sqrt{2\beta_x J_x} \cos(\phi_x) \qquad \qquad x' = -\sqrt{\frac{2J_x}{\beta_x}} [\sin(\phi_x) + \alpha_x \cos(\phi_x)]$$

$$\phi_x(s_2) - \phi_x(s_1) = \Delta \phi_x = \int_{s_1}^{s_2} \frac{1}{\beta_x(s)} ds'$$

Betatron Tune:

$$\nu = \frac{1}{2\pi} \int_{s_0}^{s_0+C} \frac{1}{\beta_x(s)} ds'$$

$$\phi_x(t + NT_{rev}) = \phi_x(t) + 2\pi N\nu$$

Two BPM Measurement

The correlation between X1 and X2, can be used to see the betatron phase advance between those points.

Nonlinearities

Betatron Tune Resonance

Perturbation will accumulate if tune is a fraction corresponding to the symmetry of the applied fields.

Tune Diagrams

The tune is carefully picked to avoid resonances.

The tune for the beam occupies a finite space:

- Laslett space-charge tune spread.
- Amplitude-dependent tune shift.
- Tune-change during acceleration.
- Chromaticity
- beam-beam effects

Barletta

Phase-space Distortions

Nonlinear Decoherence

Injection errors, instabilities, and sudden lattice changes may cause a phasespace mismatch.

Tune spread causes the beam to fill-out along the phase-space contours.

Kain

Off-Momentum Particles

Dispersion

$$\sigma_{x,rms}^2 = \beta_x \epsilon_{rms} + D^2 \delta^2$$

Barletta

Chromaticity

Change in tune with momentum:

Chromaticity:

Barletta

Sextupoles & Chromaticity Correction

Chromaticity is tune dependence on momentum.

Sextupoles provide tune-shift depending on position offset.

Dispersion is position offset dependence on momentum.

$$C_x = \frac{1}{4\pi} \int_0^C \beta_x [\Delta K_x(s) + S(s)D(s)] ds$$

FNAL Rookie Book

RF Capture

Energy in one pass through cavity

$$\Delta E = qV \frac{\beta c}{d} \int_{-d/2\beta c}^{d/2\beta c} \sin(\omega_{rf}t + \phi) dt$$

$$\Delta E = -qV\left(\frac{\beta c}{d}\right) \frac{\cos(\omega_{rf}t+\phi)}{\omega_{rf}} \bigg|_{-d/2\beta c}^{d/2\beta c}$$

$$\chi \equiv \frac{\omega_{rf}d}{2\beta c} \qquad \Delta E = qV\left(\frac{1}{\chi}\right) \left[\frac{\cos(\phi + \chi) - \cos(\phi - \chi)}{-2}\right]$$

$$\Delta E = qV(\sin\chi/\chi)\sin(\phi) \to qV\sin(\phi)$$

FNAL Rookie Book

Phase-Slip Factor η

The arrival time of the particle depends on the momentum:

$$\delta \equiv \frac{p - p_0}{p_0} \qquad \qquad \frac{T - T_{rev}}{T_{rev}} \approx 0 + \frac{1}{T_{rev}} \frac{\partial T}{\partial \delta} \delta = \eta \delta$$

Higher momentum particles may arrive earlier or later than lower momentum particles:

$$\eta = \frac{1}{T_{rev}} \frac{\partial T}{\partial \delta} = \frac{1}{C} \frac{\partial C}{\partial \delta} - \frac{1}{\beta} \frac{\partial \beta}{\partial \delta} = \frac{1}{\gamma_T^2} - \frac{1}{\gamma^2}$$

We can write the change in phase per unit time using the phase-slip factor:

$$\dot{\phi} = f_{rev}\Delta\phi = 2\pi f_{rev}\frac{\Delta T}{T_{rf}} = 2\pi f_{rev}h\frac{\Delta T}{T_{rev}} = 2\pi f_{rev}h\eta\delta \qquad \qquad f_{rf} = hf_{rev}$$

Longitudinal Focusing

$$\dot{\phi} = 2\pi f_{rev} h\eta \delta, \ \dot{\delta} = f_{rev} \frac{qV}{\beta^2 E_0} \sin(\phi)$$
$$\ddot{\phi} = 2\pi f_{rev}^2 \frac{qV}{\beta^2 E_0} h\eta \sin(\phi)$$

Synchrotron Freq.

$$\eta < 0 : \ddot{\phi} = -\omega_s^2 \sin(\phi)$$

$$\eta > 0 : \ddot{\phi} = -\omega_s^2 \sin(\phi + \pi)$$

$$\omega_s = 2\pi f_{rev} \sqrt{\frac{qVh|\eta|}{2\pi\beta^2 E_0}}$$

Oscillatory & Slipping Motion

The further off momentum, the faster the slipping motion. Lost particles rapidly decohere from each other.

RF Acceleration

- Particles in the bucket can be accelerated by adiabatically changing the RF frequency.
- Particles outside the bucket are left behind, decelerated relative to the moving reference frame.

 $\dot{\delta} = f_{rev} V_{\delta}[\sin(\phi) - \sin(\phi_s)], \ \dot{\phi} = 2\pi f_{rev} h\eta \delta$

X. Kang SY. Lee

Transition Crossing

$$\frac{T - T_{rev}}{T_{rev}} \approx 0 + \frac{1}{T_{rev}} \frac{\partial T}{\partial \delta} \delta + \frac{1}{T_{rev}} \frac{\partial^2 T}{\partial \delta^2} \frac{\delta^2}{2} = \eta_0 \delta + \eta_1 \delta^2$$